SIX1 acts synergistically with TBX18 in mediating ureteral smooth muscle formation.

نویسندگان

  • Xuguang Nie
  • Jianbo Sun
  • Ronald E Gordon
  • Chen-Leng Cai
  • Pin-Xian Xu
چکیده

Dysfunction of the ureter often leads to urine flow impairment from the kidney to the bladder, causing dilation of the ureter and/or renal pelvis. Six1 is a crucial regulator of renal development: mutations in human SIX1 cause branchio-oto-renal (BOR) syndrome and Six1(-/-) mice exhibit renal agenesis, although the ureter is present. It remains unclear whether Six1 plays a role in regulating ureter morphogenesis. We demonstrate here that Six1 is differentially expressed during ureter morphogenesis. It was expressed in undifferentiated smooth muscle (SM) progenitors, but was downregulated in differentiating SM cells (SMCs) and had disappeared by E18.5. In Six1(-/-) mice, the ureteral mesenchymal precursors failed to condense and differentiate into normal SMCs and showed increased cell death, indicating that Six1 is required for the maintenance and normal differentiation of SM progenitors. A delay in SMC differentiation was observed in Six1(-/-) ureters. A lack of Six1 in the ureter led to hydroureter and hydronephrosis without anatomical obstruction when kidney formation was rescued in Six1(-/-) embryos by specifically expressing Six1 in the metanephric mesenchyme, but not the ureter, under control of the Eya1 promoter. We show that Six1 and Tbx18 genetically interact to synergistically regulate SMC development and ureter function and that their gene products form a complex in cultured cells and in the developing ureter. Two missense mutations in SIX1 from BOR patients reduced or abolished SIX1-TBX18 complex formation. These findings uncover an essential role for Six1 in establishing a functionally normal ureter and provide new insights into the molecular basis of urinary tract malformations in BOR patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smad4 Regulates Ureteral Smooth Muscle Cell Differentiation during Mouse Embryogenesis

Proper formation of ureteral smooth muscle cells (SMCs) during embryogenesis is essential for ureter peristalsis that propels urine from the kidney to the bladder in mammals. Currently the molecular factors that regulate differentiation of ureteral mesenchymal cells into SMCs are incompletely understood. A recent study has reported that Smad4 deficiency reduces the number of ureteral SMCs. Howe...

متن کامل

Going in circles: conserved mechanisms control radial patterning in the urinary and digestive tracts.

Radial patterning in the urinary tract and gut depends on reciprocal signaling between epithelial cells, which form mucosa, and mesenchyme, which forms smooth muscle and connective tissue. These interactions depend on sonic hedgehog (Shh), which is secreted by epithelial cells and induces expression of bone morphogenetic protein 4 (Bmp4), a signaling molecule required for differentiation of smo...

متن کامل

Sonic hedgehog, TBX18, and TSHZ3 proteins involved in pyeloureteral motility development are overexpressed in ureteropelvic junction obstruction

OBJECTIVES To compare pathological samples obtained from cases that underwent surgery for ureteropelvic junction (UPJ) obstruction with samples obtained during autopsies of subjects.  METHODS Retrospectively, 42 patients who had undergone surgery due to UPJ obstruction (group 1) were included in the study. Histopathological and immunohistochemical features for sonic hedgehog (SHH), TBX18, and...

متن کامل

Transcriptional Control of Cell Lineage Development in Epicardium-Derived Cells

Epicardial derivatives, including vascular smooth muscle cells and cardiac fibroblasts, are crucial for proper development of the coronary vasculature and cardiac fibrous matrix, both of which support myocardial integrity and function in the normal heart. Epicardial formation, epithelial-to-mesenchymal transition (EMT), and epicardium-derived cell (EPDC) differentiation are precisely regulated ...

متن کامل

Tbx18 function in epicardial development.

AIMS The embryonic epicardium is a source of smooth muscle cells and fibroblasts of the coronary vasculature and of the myocardium, but the molecular circuits that direct the temporal and spatial generation of these cell types from epicardium-derived cells are only partly known. We aimed to elucidate the functional significance of the conserved epicardial expression of the T-box transcription f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 137 5  شماره 

صفحات  -

تاریخ انتشار 2010